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EXPEKEMENTAL STABILITY AND DRAG OF A POINTED 

AND A BLUNTED 30° H A ~ A N G I E  CONE AT 

MACH NlJMBERS FROM 11.5 T'O 34 I N  AIR 

By Pe ter  F. I n t r i e r i  
Ames Research Center 

SUMMARY 

An experimental study has been conducted of t h e  s t a t i c  and dynamic s t a b i l -  
i t y  and drag c h a r a c t e r i s t i c s  of a pointed and a sphe r i ca l ly  blunted 30' ha l f -  
angle cone i n  a i r  at  v e l o c i t i e s  of about 4 km/sec, 6.7 km/sec, and 8.5 km/sec, 
corresponding t o  nominal Mach numbers of 11.5, 19.5, and 34, respec t ive ly ,  and 
a t  Reynolds numbers from about 80,000 t o  170,000 based on model base diameter. 
For center-of-gravity loca t ions  representa t ive  of s o l i d  homogeneous models, 
both configurations were s t a t i c a l l y  s t ab le  a t  a l l  Mach numbers throughout t he  
angle-of-attack range of t he  inves t iga t ion .  The s t a t i c  s t a b i l i t y  of t h e  
pointed cone increased somewhat with increasing Mach number. The s t a t i c  s t ab i l -  
i t y  of t h e  blunted cone w a s  e s s e n t i a l l y  invar ian t  with Mach number and g rea t e r  
than  t h a t  of t h e  pointed cone by as much as 40 percent .  The s t a t i c  s t a b i l i t y  
of both configurations decreased with increasing angle of a t t ack .  The non- 
l i n e a r  va r i a t ions  of p i tch ing  moment with angle of a t t a c k  for both configura- 
t i o n s  were c lose ly  approximated by a cubic polynomial. Both configurations 
were dynamically s t a b l e  a t  Mach numbers of 11.5 and 19.5 f o r  unpowered f l i g h t  
a t  constant a l t i t u d e  and exhib i ted  p i tch ing  motions which converged a t  the  r a t e  
of about 3 percent  p e r  cycle.  A t  a Mach number of 34 t h e  blunted cone exhib- 
i t e d  increased dynamic s t a b i l i t y ;  t h e  pointed cone exhib i ted  dynamic i n s t a b i l -  
i t y .  The dynamic i n s t a b i l i t y  of t h e  pointed cone became l e s s  severe with 
increasing angle of a t t a c k .  The drag coe f f i c i en t  of both configurations 
increased with increasing angle of a t t a c k  and remained e s s e n t i a l l y  constant 
with increasing Mach number. The drag of t h e  blunted cone w a s  approximately 
8 percent g rea t e r  than  t h a t  of t h e  pointed cone. 

I 

The s t a t i c  s t a b i l i t y  and drag c h a r a c t e r i s t i c s  of both configurations were 
pred ic ted  by Newtonian theory and, f o r  t h e  pointed cone, by conical-flow theory, 
u sua l ly  wi th in  about 10 percent .  Estimates of t h e  dynamic s t a b i l i t y  of both 
configurations ca lcu la ted  using Newtonian theory were i n  agreement wi th  the  
experimental r e s u l t s  a t  Mach nunibers of 11.5 and 19.5. 

INTRODUCTION 

For ent r ies  i n t o  p l ane ta ry  atmospheres a t  v e l o c i t i e s  w e l l  i n  excess of 
earth-escape ve loc i ty ,  re fe rences  1 and 2 have demonstrated t h e  d e s i r a b i l i t y  of 
using pointed, conica l  e n t r y  bodies t o  reduce t h e  t o t a l  aerodynamic heating. 
Radiative heating, which i s  much g rea t e r  than  convective heating for very b lun t  
configurations a t  these  very high speeds, depends on t h e  ve loc i ty  normal t o  t h e  
bow shock wave r a t h e r  than  on t h e  free-stream ve loc i ty  and, t he re fo re ,  can be 



d r a s t i c a l l y  reduced by using en t ry  bodies with highly swept bow shock waves. 
References 1 and 2 show t h a t  t h e  t o t a l  aerodynamic heating f o r  en t ry  above t h e  
escape speed i n t o  t h e  e a r t h ’ s  atmosphere ( r e f .  1) and t h e  atmosphere of Venus 
( ref .  2) w i l l  be min i”  f o r  a cone half-angle of about 30’. 

The design of an e n t r y  vehicle a l s o  r equ i r e s  knowledge of t h e  s t a t i c  and 
dynamic s t a b i l i t y  and drag c h a r a c t e r i s t i c s  t o  determine whether these  charac- 
t e r i s t i c s  a r e  adequate t o  o r i en t  t h e  heat sh i e ld  proper ly  during t h e  en t ry  and 
t o  prevent divergent o s c i l l a t i o n s  from occurring a t  a l t i t u d e s  below t h a t  f o r  
maxi” dynamic pressure .  Since pointed en t ry  bodies may undergo a s ign i f i can t  
amount of nose b lunt ing  due t o  ab la t ion  during en t ry ,  it i s  important t o  deter-  
mine the  e f f e c t  of t h i s  change i n  nose bluntness on t h e  s t a b i l i t y  character-  
i s t i c s .  

Some experimental da ta  a re  ava i l ab le  on the  s t a t i c  s t a b i l i t y  and drag 
c h a r a c t e r i s t i c s  of t h e  pointed 30’ half-angle cone (see,  e.g. ,  r e f s .  3-6).  
However, with the  exception of reference 5 ,  which p resen t s  t he  s t a t i c  and the  
dynamic s t a b i l i t y  and drag of a pointed 30° half-angle cone with afterbody i n  
a i r  (and a l s o  i n  an N2-CO2 mixture) a t  Mach numbers up t o  13.5, t h e  only exper- 
imental s t a b i l i t y  da ta  ava i l ab le  above a Mach number of 8 were obtained i n  
helium a t  a Mach number of 20.3 (see r e f .  6 ) .  

The purpose of t h i s  i nves t iga t ion  w a s  t o  determine the  s t a t i c  and dynamic 
s t a b i l i t y  and drag c h a r a c t e r i s t i c s  of a pointed and a moderately blunted 30’ 
half-angle cone i n  air  a t  hypersonic Mach numbers t o  about 30. The inves t iga-  
t i o n  w a s  conducted i n  the  prototype of t he  Ames Hypervelocity Free-Flight 
F a c i l i t y  i n  a i r .  
8.3 km/sec, corresponding t o  nominal &ch numbers of 11.5, 19.5, and 34, 
respec t ive ly .  The free-stream Reynolds numbers ranged from 80,000 t o  l7O,OOO, 
based on model base diameter. The present  experimental r e s u l t s  a r e  compared 
with other ava i l ab le  experimental da ta  and a l s o  with es t imates  made using 
Newtonian theory and conical-flow theory. 

The model v e l o c i t i e s  were 4 lan/sec, 6.7 km/sec, and 

SYMBOLS 

A 

CD 

cDO 

CL 

reference a rea ,  model base a rea ,  m2 

t o t a l  drag 
- I !  

drag coe f f i c i en t ,  
%ofi 

drag coe f f i c i en t  a t  zero angle of a t t a c k  

l i f t  coe f f i c i en t ,  lift force 
qco* 

l i f t - c u r v e  slope, 3, per  radian 
d a  

pi tch ing  moment pitching-moment coe f f i c i en t ,  
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pitching-moment-curve slope, 3, per  radian 

pitching-moment-curve slope based on a frequency-equivalent l i n e a r  
cm, d a  

C 
%L pitching-moment curve, pe r  radian 

, per  rad ian  a c m  + 

Cmq + C% damping - in-p it ch der iva t ive  a ( qd/Vca) a (&d/V,) 

d reference diameter, model base diameter , em 

moment of i n e r t i a  about a t ransverse  a x i s  through t h e  center  of 
grav i ty ,  kg- m2 =Y 

k t ransverse  radius of gyration, m 

constant i n  equation (1) 

constants i n  equation ( 2 ) ,  deg 

k, 

K,,K,,K, 

m m a s s  of model, g 

M, free-stream Mach number 

M, Mach number of countercurrent a i r  stream 

roll parameter, rate radians/m 
P velocity.’ 

cl angular p i tch ing  ve loc i ty  , radians/  se c 

free-stream dynamic pressure , N/m2 s, 
nose rad ius  of curvature, em rn 

Re Reynolds number based on free-stream a i r  p rope r t i e s  and model base 
diameter 

0 T, free-stream a i r  temperature, K 

vca free-stream ve loc i ty ,  km/sec 

Va ve loc i ty  of countercurrent air stream i n  labora tory  coordinates, 
km/sec 

X d i s tance  along f l i g h t  pa th  r e l a t i v e  t o  the  free-stream air ,  m 

a x i a l  d i s tance  from model base t o  center-of-gravity pos i t i on ,  em xcg 

Y ho r i zon ta l  coordinate norma t o  the  f l i g h t  pa th ,  m 

Z coordinate normal t o  t h e  f l i g h t  pa th  and y a.xis, m 

3 



a 

P 

‘m 

‘ 0  

f 

i 

maX 

angle of a t t ack  (angle between model a x i s  and r e s u l t a n t  wind d i r ec t ion  
projected onto the  v e r t i c a l  p lane) ,  deg 

angle of s ides l ip  (angle between model a x i s  and r e su l t an t  wind direc-  
t i o n  projected onto the  hor izonta l  p lane) ,  deg 

damping parameters i n  equation (2) ,  pe r  m 

a t t i t u d e  coordinates of t h e  model r e l a t i v e  t o  ear th-f ixed axes, deg 

wave length of p i tch ing  osc i l l a t ion ,  m/cycle 

dynamic-stabil i ty parameter f o r  constant a l t i t u d e  (eq. ( 5 ) )  

f ree-  stream air  density,  kg/m3 

standard sea- level  air density,  l:225 kg/m3 

re su l t an t  angle of a t tack ,  tan-’ d tan2  a + tan2 p, deg 

maximum resu l t an t  angle of a t tack ,  deg 

minimum resu l t an t  angle of a t t ack ,  deg 

root-mean-square r e su l t an t  angle of a t tack ,  ? deg 

r a t e  of r o t a t i o n  of complex vectors  which generate the  model pi tching 
motion (eq. ( 2 ) ) ,  radians/m 

f i r s t  der ivat ive with respect  t o  time 

Subscripts 

f i n a l  value 

i n i t i a l  value 

DESCRIPTION OF TESTS 

Test Technique and Test Conditions 

The tes t s  were performed i n  the  prototype of t he  Ames Hypervelocity Free- 
F l igh t  F a c i l i t y  by launching models f rom a l igh t -gas  gun i n t o  e i t h e r  s t i l l  a i r  
or i n t o  a countercurrent a i r  stream. The countercurrent a i r  stream of 
1.8 km/sec w a s  generated by a shock-tube-driven hypersonic nozzle which i s  con- 
toured t o  provide f l o w  a t  a Mach number of 7. 
f a c i l i t y  i s  heated i n  a cold helium-driven shock tube which i s  operated under 

The reservoi r  a i r  f o r  t h i s  
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t a i l o r e d  in t e r f ace  conditions.  Figure 1 i s  a schematic view of t he  f a c i l i t y .  
A de t a i l ed  descr ip t ion  of t h e  f a c i l i t y  and i t s  operating cycle may be found i n  
reference 7 .  The l igh t -gas  gun w a s  similar t o  t h e  one described i n  r e f e r -  
ence 8. 
launched a t  nominal v e l o c i t i e s  of 4 km/sec and 6.7 km/sec i n t o  s t i l l  air  a t  
ambient temperature corresponding t o  nominal Mach numbers of 11.5 and 19.5, 
respectively; a t  6.7 km/sec ( the  same model ve loc i ty  used i n  t h e  M, = 19.5 
t e s t s )  they were launched i n t o  t h e  1.8 km/sec countercurrent a i r  stream t o  give 
a combined ve loc i ty  of about 8.5 km/sec. A t  t h e  ambient temperature of t h e  
t es t  stream, t h i s  ve loc i ty  corresponds t o  a nominal Mach number of 34. 
order t o  obta in  adequate d e f i n i t i o n  of t he  motions of t he  models i n  t h e  t e s t  
sec t ion  w i t h  t h e  given spacing of t h e  observation s t a t i o n s  ( see  below), t h e  
t e s t s  were conducted a t  reduced free-stream dens i t i e s ,  p,/p, of about 0.02, t o  
give t h e  desired wave length  of o sc i l l a t ion .  Free-stream p rope r t i e s  f o r  t h e  
tes ts  i n t o  s t i l l  a i r  w e r e  determined from measurements of the  pressure  and t e m -  
pera ture  i n  t h e  t e s t  sec t ion  immediately p r i o r  t o  launching t h e  model. These 
measurements of pressure  and temperature gave free-stream dens i ty  within 
2.5 percent f o r  t h e  t es t s  i n  s t i l l  a i r .  When the  f a c i l i t y  i s  operated with i t s  
countercurrent a i r  stream, t h e  free-stream p rope r t i e s  a r e  determined by the  
following procedure. The stream t o t a l  enthalpy ( r e l a t i v e  t o  the  labora tory)  i s  
determined from measurements of t h e  i n i t i a l  charging pressures  and temperatures, 
ve loc i ty  of t h e  inc ident  shock, and t r ans i en t  h i s t o r y  of stagnation-region 
pressures  i n  t h e  shock tube.  The t e s t - sec t ion  free-stream ve loc i ty  and dens i ty  
a r e  then determined from measurements of t h e  s t a t i c  pressure  a t  various sta- 
t i o n s  i n  the  t e s t  sec t ion ,  assuming i sen t ropic  flow. Cal ibra t ion  measurements 
of p i t o t  pressure and Mach number ( the  l a t t e r  determined from measurements of 
t h e  shock-wave angle on a s t a t iona ry  cone) have shown t h a t  t he  described den- 
s i t y  determinations a r e  accurate t o  within 10 percent .  
ana lys i s  of t h e  pressure  records obtained a t  t h e  various s t a t i o n s  i n  the  t e s t  
sec t ion  during the  model f l i g h t s  indicated a steady decrease i n  free-stream 
density of about 10 t o  20 percent from t h e  beginning t o  t h e  end of each of t h e  
recorded f l i g h t  t r a j e c t o r i e s  of the  models. The average free-stream density 
determined from these  s t r a i g h t - l i n e  va r i a t ions  of dens i ty  with distance (or 
time) f o r  each independent f l i g h t  of t h e  model w a s  used t o  compute the  s t a b i l -  
i t y  and drag coe f f i c i en t s  a t  t h i s  Mach number (M, = 3 4 ) .  The drag da ta  ( t o  be 
presented l a t e r )  suggest t h a t  t h e  free-stream dens i ty  a t  Mach number 34 may be 
approximately 6 percent higher than the  average value used i n  the  computations 
i f  drag coe f f i c i en t  i s  a c t u a l l y  constant with increasing Mach number from 11.5 
t o  34. 
e f f e c t  on t h e  drag and s t a t i c - s t a b i l i t y  coe f f i c i en t s  (although these  coe f f i -  
c i e n t s  a r e  s t i l l  accurate t o  only +lo percent due t o  t h e  i n i t i a l  uncer ta in ty  i n  
determining free-stream dens i ty  as s t a t e d  above); i t s  e f f e c t  on t h e  dynamic- 
s t a b i l i t y  r e s u l t s  i s  discussed i n  t h a t  sec t ion  of t he  r e p o r t .  The average 
values of Mach number, ve loc i ty ,  and Reynolds number a r e  l i s t e d  i n  t a b l e  I f o r  
each f l i g h t .  The nominal t e s t  conditions a re  summarized below. 

It had a deformable p i s t o n  and a 12.7-mm bore.  The models were 

I n  

For t he  present  t e s t s ,  

The gradien t  i n  free-stream density,  it w a s  determined, had l i t t l e  

5 
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SUMMARY OF NOMINAL TEST CONDITIONS 

T e s t  environment 

S t i l l  a i r  

S t i l l  a i r  

Countercurrent air  stream 
M a  M 7, Va M 1.8 km/sec 

. . - .. - . - 

Ta9 
OK 

295 

295 

170 

The t r a j e c t o r y  of t h e  model through t h e  t e s t  sec t ion  w a s  recorded by 11 
spark shadowgraph s t a t i o n s  located a t  about 1.2-meter i n t e r v a l s .  An enlarged 
view of p a r t  of t h e  t es t  sec t ion  i s  shown i n  the  i n s e t  t o  f i g u r e  1. Side and 
top views of t h e  models w e r e  recorded a t  each s t a t i o n .  The shadowgraphs con- 
ta ined  images of reference wires  fromwhich x, y, z, 8, and @ coordinates 
were read. The l i n e a r  coordinates were measured t o  wi th in  0.007 cm, and the  
angles ,  t o  wi th in  0.5'. The o r i en ta t ion  angles, 8 and @, w e r e  read r e l a t i v e  t o  
ear th-f ixed axes. No cor rec t ions  were made f o r  t h e  angle between the  r e s u l t a n t  
wind d i r ec t ion  and ear th-f ixed axes t o  y i e l d  a and P since f o r  these  t e s t s  
these cor rec t ions  were within the  reading accuracy of t h e  angles  8 and @. 
Time of model f l i g h t  between s t a t i o n s  w a s  recorded with e l ec t ron ic  chronographs 
t o  within 0.02 psec . 

Models and Sabots 

Sketches of t h e  models used i n  the  present  inves t iga t ion  showing pe r t inen t  
nominal dimensions a re  presented i n  f igu re  2.  The models were s o l i d  homoge- 
neous bodies machined from e i t h e r  7075-T6 aluminum or  Teflon. 
models were t e s t e d  a t  a Mach number of 11.5. A t  the  higher Mach numbers 
(M, = 19.5 and 34) the  heating r a t e s  encountered were s u f f i c i e n t l y  high t o  
cause the  m e t a l  models t o  burn i n  f l i g h t .  The models i n  the  high-speed t e s t s  
were made of Teflon, which w a s  found t o  be a successful  hea t  sh i e ld .  The 
Teflon ablated during the  f l i g h t s  bu t  t he  changes i n  shape, p a r t i c u l a r l y  b l u r t -  
ing of t h e  t i p ,  were observed i n  t h e  shadowgraphs t o  be in s ign i f i can t .  It 
should be mentioned t h a t  each aluminum model had a s m a l l  shaf t  extending from 
t h e  base t o  f a c i l i t a t e  reading the  model's pos i t i on  i n  t h e  shadowgraph pictures .  
It w a s  not poss ib le  t o  use similar sha f t s  on t h e  Teflon models s ince these  1 

p l a s t i c  sha f t s  w e r e  usua l ly  sheared of f  during the  launching process .  The 
dimensions and mass of each model w e r e  measured t o  wi th in  tO.OOO5 em ( 0 . 1 p e r -  
cent d )  and +0.0002 g (0.1 percent ) ,  respec t ive ly .  Because the  models were , 
s m a l l  and of low m a s s ,  measurement of t h e  center-of-gravi ty  pos i t i on  and moment 
of i n e r t i a  of t h e  models by ex i s t ing  techniques w a s  not p rac t i ca l ;  therefore ,  
computed values were used. 
s l i g h t l y  from those shown i n  f igu re  2, these  nominal dimensions were used i n  
the  computations. The a c t u a l  center-of-gravity p o s i t i o n  of t h e  models i s  e s t i -  
mated t o  be wi th in  k0.0025 em of t h e  computed values .  Some of t he  phys ica l  
cha rac t e r i s t i c s  of each model are l i s t e d  i n  t a b l e  I. 

The aluminum 

Since t h e  dimensions of the  models var ied only 



Photographs of t h e  models and sabots a re  presented i n  f igu re  3. The alumi- 
num models were launched by means of t h e  two-piece sabot shown i n  f igu re  3 (a ) .  
The Teflon models f a i l e d  when launched with t h i s  sabot but were launched suc- 
ces s fu l ly  by means of t h e  sabot shown i n  f igu re  3 ( b ) .  Each sabot w a s  machined 
from k x a n  (polycarbonate p l a s t i c )  and upon leaving the  gun w a s  separated from 
t h e  model by aerodynamic fo rces  ac t ing  on t h e  f r o n t  face .  

REDUCTION OF DATA 

Drag 

Drag coe f f i c i en t s  were determined from t h e  time-distance da ta  of each 
f l i g h t  by t h e  method presented i n  reference 9 ,  which assumes a constant drag 
c o e f f i c i e n t .  A method applicable t o  cases where t h e  drag coe f f i c i en t  va r i e s  
w i t h  angle of a t t a c k  i s  presented i n  reference 10. It i s  shown i n  t h i s  r e f e r -  
ence t h a t  i f  t h e  drag coe f f i c i en t  va r i e s  with the  square of t h e  l o c a l  r e s u l t a n t  
angle of a t t a c k ,  according t o  the r e l a t i o n  

the  e f f e c t i v e  constant drag coe f f i c i en t  obtained by the  method of reference 9 
i s  t h e  drag coe f f i c i en t  that  would be obtained a t  a constant angular displace- 
ment equal t o  t h e  root-mean-square r e s u l t a n t  angle of a t t ack ,  arms, determined 
from t h e  angular orientation-distance h i s to ry  of each f l i g h t .  The present  
r e s u l t s  were found t o  be adequately represented by equation (1) and a r e  there-  
fo re  co r re l a t ed  with arms. 

S t a b i l i t y  Derivative s 

The s t a b i l i t y  der iva t ives  were determined from ana lys i s  of t he  p i tch ing  
and yawing motions experienced by t h e  models during f r e e  f l i g h t .  Examples of 
t he  types of motions encountered i n  the  present  t e s t s ,  as viewed i n  t h e  a-P 
plane, a r e  shown i n  f igu re  4. 
t h e  shadowgraphs a t  each s t a t i o n  a r e  ind ica ted  by the  symbols. The curves show 
t h e  t h e o r e t i c a l  motions which b e s t  f i t  t he  experimental data,  and they were 
computed by a method discussed l a t e r  i n  t h i s  sec t ion .  The models i n  these  
t e s t s  were a x i a l l y  symmetric so that the  angular displacement of the model, a t  

orthogonal components are t h e  angles a and P .  A s  ind ica ted  by the  representa- 
t i v e  examples presented i n  f i g u r e  4, t he  motions obtained f o r  both configura- 

e l l i p s e s  ( i n  t h e  a - P  p l ane ) ,  and the  angle-of-attack range through which the  
models o s c i l l a t e d  d i f f e red  f o r  each f l i g h t .  A l s o  it i s  important t o  po in t  out 
i n  f igu re  4 t h a t  t h e  models underwent between 1-1/2 and 2 cycles of o s c i l l a t i o n  
during f l i g h t  through t h e  instrumented t e s t  sec t ion ,  which i s  s u f f i c i e n t  f o r  
determining s t a t i c  s t a b i l i t y  and usua l ly  adequate f o r  determining dynamic sta- 
b i l i t y  although more cycles of well-defined motion w i l l  genera l ly  produce 
b e t t e r  dynamic-stability r e s u l t s .  

The angles of a t t a c k  and s i d e s l i p  measured from 

I any i n s t a n t ,  can be represented a l s o  by the  r e s u l t a n t  angle of a t t ack ,  0 ,  whose 

1 t i o n s  a t  a l l  Mach numbers were characterized by r e l a t i v e l y  narrow, precessing 
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The ana lys i s  of t h e  p i t ch ing  and yawing motions of t h e  models, t o  ob ta in  
t h e  s t a b i l i t y  coe f f i c i en t s ,  consisted i n  f i t t i n g  t h e  following equation t o  the  
measurements of a and I3 of each f l i g h t  

are func t ions  of t h e  aerodynamic s t a b i l i t y  c o e f f i c i e n t s  
1,2 

where v1,2 and W 

so lu t ion  t o  t h e  d i f f e r e n t i a l  equation of motion i n  a and 
of small amounts of roll r a t e  and t r i m ) ,  as given i n  reference 11, and i s  based 
on t h e  assumption of a l i n e a r  v a r i a t i o n  of r e s t o r i n g  moment with angle of 
a t t a c k .  
t i o n  and small angular displacements. 
computation, w a s  used t o  s e l e c t  optimum values of t h e  constants by an i t e r a t i v e  
process of d i f f e r e n t i a l  cor rec t ions .  

a r e  func t ions  of t h e  i n i t i a l  conditions.  Equation (2)  i s  the  and K 1 , 2 , 3  
( including e f f e c t s  

The development of equation (2 )  a l s o  assumes a symmetrical configura- 
Equation (2), programmed f o r  machine 

The curves presented i n  f igu re  4 show t h e  t h e o r e t i c a l  motions obtained by 
f i t t i n g  equation (2) t o  the  e x p e r h e n t a l  da t a .  The closeness of t h e  t h e o r e t i -  
c a l  motions t o  t h e  experimental da ta  i s  a measure of t h e  r e l i a b i l i t y  of t h e  
s t a b i l i t y  r e s u l t s .  
ga t ion  agreed with t h e  measured angles wi th in  t h e  measuring accuracy. 

The f i t t e d  curves f o r  a l l  f l i g h t s  analyzed i n  t h i s  i n v e s t i -  

based on a l i n e a r  moment curve, w a s  
k L 7  

The s t a t i c  - s tab  i l i t y  der iva t ive  , 
computed from t h e  wave length  of o s c i l l a t i o n  using t h e  r e l a t i o n  

where 

and w1 and Up are determined from equation ( 2 ) .  

The dynamic-stabil i ty parameter, 5 ,  defined as 

w a s  determined from t h e  constants q l a n d  q2 by means of t h e  r e l a t i o n  

It has been shown i n  references 3 and 12  t h a t  
t i o n  ( 5 ) ,  i s  a convenient parameter f o r  describing the  dynamic s t a b i l i t y  of a 
vehicle i n  unpowered f r e e  f l i g h t  a t  constant a l t i t u d e  and i n  b a l l i s t i c  en t ry ,  
respec t ive ly .  The values of 5 ,  presented i n  t h i s  r epor t ,  were obtained from 
equations (2)  and (6), which assume a l i n e a r  system over t h e  angle-of-attack 
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5 ,  i n  t he  form shown i n  equa- 



range covered during any one f l i g h t .  Each value of E., t he re fo re ,  i s  t h e  
dynamic-stability parameter of an equivalent l i n e a r  system whose amplitude of 
o s c i l l a t i o n  would grow or diminish i n  t h e  same way as t h a t  experienced by the  
model. 

RESUECS AND DISCUSSION 

The experimental r e s u l t s  of t h i s  i nves t iga t ion  a r e  summarized i n  t a b l e  I, 
where the  measured values of 

and f r o n t a l  a rea ,  a r e  l i s t e d  f o r  each f l i g h t .  Values of om, u0, and or,, are 
a l s o  presented i n  t a b l e  1 t o  ind ica te  the  angle-of-attack range through which 
each model o s c i l l a t e d  during t h e  f l i g h t .  I n  the  following sec t ions  t h e  experi- 
mental r e s u l t s  a r e  presented graphica l ly  and a r e  compared with other ava i lab le  
experimental da ta  and t h e o r e t i c a l  estimates based on conical-flow theory f o r  
a i r  ( r e f .  13) and the equations presented i n  reference 14  based on Newtonian 
theory.  Enthalpy values of atmospheric f l i g h t  were duplicated i n  the  t e s t s  a t  
Mach numbers of 11.5 and 19.5; a t  M, = 34.0 t h e  enthalpy w a s  approximately 
58 percent t h a t  of atmospheric f l i g h t  a t  t h i s  Mach number. I n  the  t e s t s  a t  
Mach numbers 19.5 and 34, t h e  heating r a t e s  were s u f f i c i e n t l y  high t o  cause 
ab la t ion  of t h e  p l a s t i c  models. These models survived t h e  f l i g h t s  without sig- 
n i f i c a n t  change i n  shape. The e f f e c t s  of gas d i s soc ia t ion  and surface ab la t ion  
cannot be i s o l a t e d  and a r e  imp l i c i t  i n  t he  experimental r e s u l t s .  Shadowgraphs, 
t y p i c a l  of those obtained i n  the  present t e s t s ,  a r e  presented i n  f igu re  5 t o  
show gross  f ea tu res  of t h e  flow f i e l d s ,  p a r t i c u l a r l y  t h e  bow shock waves. 

CD, CmL, and E., based on model base diameter 

Drag Character i st  i c s 

The measured values of drag coe f f i c i en t  f o r  bo th  configurations a r e  pre- 

A s  discussed e a r l i e r ,  t h i s  presenta t ion  i s  equivalent t o  a p l o t  of 
sented as a func t ion  of t h e  root-mean-square r e s u l t a n t  angle of a t t a c k  i n  f i g -  
ure  6. CD 
versus a, as would be obtained from conventional wind-tunnel t e s t s .  The exper- 
imental data show t h a t  t he  drag coe f f i c i en t s  of both configurations increase 
w i t h  increasing angle of a t t a c k  and a r e  l i t t l e  a f f ec t ed  by changes i n  Mach num- 
ber  from 11.5 t o  34. The s l i g h t l y  higher drag c o e f f i c i e n t s  obtained f o r  both 
configurations a t  a Mach number of 34 may r e s u l t  from a 5- t o  10-percent b i a s  
i n  t h e  value of free-stream dens i ty  used t o  compute t h e  coe f f i c i en t s .  The 
e f f e c t  of angle of a t t a c k  on t h e  drag coe f f i c i en t s  of bo th  configurations i s  

* wel l  pred ic ted  by Newtonian theory ( C  = 2 ) .  
P,X 

Figure 7 p resen t s  t h e  drag coe f f i c i en t s  of bo th  configurations a t  zero 
angle of a t t a c k  as a func t ion  of Mach number. These da t a  were obtained from 
s t r a i g h t - l i n e  ex t rapola t ions  of the  experimental da ta  of f igu re  6, when p l o t t e d  
versus osms. The r e s u l t a n t  model v e l o c i t i e s  obtained i n  the  present  t e s t s  are 
a l s o  ind ica ted  i n  t h i s  f i g u r e .  The present  experimental da ta  i n  f igu re  7 show 
e s s e n t i a l l y  no change with Mach number and good agreement with t h e  experimental 
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data  of references 3, 4, and 6, which are a l s o  included i n  t h i s  f i g u r e . l  
good agreement between t h e  present  value of f o r  t he  pointed cone a t  a Mach 
number of 19.5 ( i n  a i r )  and the  value obtained i n  reference 6 f o r  t h e  same con- 
f i g u r a t i o n  at e s s e n t i a l l y  t h e  same Mach number i n  helium ind ica t e s  t h a t  t he  
combined e f f e c t s  of d i f fe rences  i n  the  two tes t s ,  such as model ab la t ion  ( the  
Teflon models used i n  the present  tes ts  a t  t h i s  Mach number ab la ted  during 
f l i g h t ,  the model i n  t h e  tes t s  of reference 6 d id  n o t ) ,  enthalpy level  of t h e  
tests, tes t  gas, and Reynolds number, had l i t t l e  e f f e c t  on the drag coe f f i c i en t  
a t  zero angle of a t t a c k  of t h i s  configurat ion.  Conical-flow theory adequately 
p r e d i c t s  t he  drag coe f f i c i en t  of t h e  pointed cone a t  zero angle of a t t ack .  The 
small increase i n  drag coe f f i c i en t  (approximately 8 percent )  because of an 
increase i n  nose bluntness  from 
Newtonian theory.  

The 
CD 

rn/d = 0 t o  rn/d = 0.20 i s  overpredicted by 

S t a t i c - S t a b i l i t y  Charac t e r i s t i c s  

The experimental values of pitching-moment-curve slope,  C"aL, based on the  

assumption of a l i n e a r  r e s to r ing  moment, are presented i n  f igu re  8 f o r  both 
configurations versus the  maximum r e s u l t a n t  angle of a t t ack ,  
that the  r e s to r ing  moment i s  nonlinear with angle of a t t ack ,  t h e  s t a b i l i t y  
r e s u l t s ,  unl ike t h e  drag r e s u l t s ,  are not cor re la ted  with arms. They a r e  
ins tead  presented as a funct ion of om, which i s  convenient f o r  f u r t h e r  analy- 
sis of t h e  d a t a  by nonlinear methods. 
moment reference center  located a t  the  center  of volume of t he  p a r t i c u l a r  con- 
f igu ra t ion .  It should be noted, however, t h a t  the  difference between the  
center-of-gravi ty  loca t ions  of t h e  homogeneous configurat ions,  as measured from 
t h e  base, i s  only about 0.009 d (see f i g .  2 ) ;  hence, t h e  cor rec t ion  t o  the 
s t a t i c - s t a b i l i t y  da ta  t o  provide comparison on the  b a s i s  of a common center-of- 
g rav i ty  pos i t i on  would be small (approximately 4 percen t ) .  It should a l s o  be 
mentioned here  t h a t  t he  s t a b i l i t y  data  obtained a t  a Mach number of 11.5 were 
not corrected f o r  t h e  small change i n  center-of-gravi ty  pos i t i on  due t o  t h e  
small shaf t  extending from the  base of each model (see f i g s .  3 and 5 )  since 
t h i s  cor rec t ion  would increase the  measured s t a b i l i t y  by less  than 1 percent .  

am. I n  the  event 

The da ta  presented i n  f igu re  8 are f o r  a 

The da ta  presented i n  figure 8 show t h a t  both configurat ions are s ta t i -  
c a l l y  s t ab le  a t  a l l  Mach numbers and angles of a t t a c k  of t he  inves t iga t ion .  I n  
general ,  t he  da ta  show t h a t  f o r  an increase i n  Mach number from 11.5 t o  34 the  
s t a b i l i t y  of t he  pointed cone increases  s l i g h t l y  and t h a t  t h e  s t a b i l i t y  of t h e  
blunted cone remains e s s e n t i a l l y  constant .  The s t a t i c  s t a b i l i t y  of both con- 
f igu ra t ions  i s  seen t o  decrease with increasing angle of a t t ack .  This var ia -  1 

t i o n  of C 

of a t t ack  i s  not l i n e a r  f o r  e i t h e r  configurat ion and requi res  an appropriate  
method of nonlinear ana lys i s .  Theoret ical  estimates ca lcu la ted  a t  zero angle 

with om ind ica t e s  t he  va r i a t ion  of p i tch ing  moment with angle 
m"L 

, 
-. - - - -. - - . .  ~~ 

'It should be noted t h a t  the  blunted cone of reference 3 did not have 
exac t ly  t h e  same nose bluntness  as t h a t  of the present  blunted cone 
(rn/d = 0.167 as compared t o  rn/d = 0.20 f o r  t h e  present  configurat ion);  how- 
ever ,  according t o  Newtonian theory t h e  e f f e c t  of t h i s  difference i n  nose 
bluntness  on drag coe f f i c i en t  i s  negl ig ib le  and, therefore ,  d i r e c t  comparison 
between t h e  two configurat ions i s  j u s t i f i e d .  
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of a t t ack  using conical-flow theory and/or Newtonian theory agree with the 
experimental da ta  (extrapolated t o  (Since t h e  
va r i a t ion  of with "true" a i s  not  known, t h i s  comparison between theory 
and experiment i s  v a l i d  only a t  zero angle of a t t ack . )  

a = 0) wi th in  about 10 percent .  

There are severa l  methods ( refs .  15-19) of analyzing the  observed p i tch ing  
and yawing motions of a symmetrical body having a nonlinear p i tch ing  moment t o  
obta in  C, as a func t ion  of a.  The method of reference 19, developed under 
the assumption t h a t  t he  nonlinear moment can be described by an a r b i t r a r y  power 
s e r i e s  of the r e s u l t a n t  angle of a t t ack ,  w a s  used t o  analyze the  data obtained 
i n  t h e  present  tes ts .  
described i n  the  appendix of reference 5, and showed t h a t  t he  present  nonlinear 
p i tch ing  moment f o r  each Mach number could be c lose ly  approximated by t h e  sim- 
p l e s t  of t he  moment representa t ions  t r i e d ,  namely, Cm = A0 + Bo3. 
of a cubic pitching-moment representa t ion  i s  developed i n  re f .  17.) 

This method w a s  used according t o  the procedures 

(This case 

The derived pitching-moment curves are shown i n  f igu re  9. These curves 
are considered v a l i d  only wi th in  the  angle-of-attack range of the experimental 
data; therefore ,  they  are terminated a t  the maxima obtained f o r  each Mach nun- 
be r  (see f i g .  8 ) .  
tha t  f o r  the angle-of-attack ranges of t h e  data t h e  s t a b i l i t y  of the  pointed 
cone ( f i g .  9 ( a ) )  increases  approximately 6 percent  f o r  an increase i n  Mach nun- 
ber from 11.5 t o  19.5 and approximately 16 percent  (+lo percent  due t o  uncer- 
t a i n t y  i n  measurement of free-stream densi ty  of countercurrent a i r  stream) f o r  
a fur ther  increase i n  Mach number t o  34, and tha t  the s t a b i l i t y  of t he  blunted 
cone ( f i g .  9 ( b ) )  i s  l e s s  a f f ec t ed  by these  changes i n  Mach number. The e f f e c t  
of angle of a t t ack  on p i t ch ing  moment f o r  bo th  configurat ions i s  wel l  p red ic ted  
by Newtonian theory.  The t h e o r e t i c a l  values of Cm are general ly  within about 
10 percent of the experimental values f o r  t h e  angle-of-at tack ranges of t h i s  
inves t iga t ion .  

Examination of t he  experimental da ta  shows, as expected, 

The i n i t i a l  s t a b i l i t y  of t he  configurat ions i s  compared i n  f igu re  10 with 
t h e o r e t i c a l  es t imates  ca lcu la ted  using conical-f  low theory and/or Newtonian 
theory and w i t h  o ther  ava i lab le  experimental data. The present  experimental 
da ta  show tha t  the  i n i t i a l  s t a b i l i t y  of bo th  configurat ions a t  the  high Mach 
numbers (M, = 11.5 t o  34) i s  very near ly  the  same as t h a t  measured a t  t he  lower 
Mach numbers (M, = 4 t o  8) i n  references 3 and 4. 
between the  present  experimental data f o r  t he  pointed cone a t  a Mach number of 
19.5 ( i n  a i r )  and the  data of reference 6 a t  e s s e n t i a l l y  the same Mach number 
i n  helium (M, = 20.3) i nd ica t e s  again that  t h e  d i f f e r e n t  conditions of t h e  two 
t e s t s ,  t h a t  i s ,  model-surface ab la t ion ,  t e s t  gas ,  enthalpy l e v e l ,  and Reynolds 
numbers, had l i t t l e  e f f e c t  on t h e  da ta .  The experimental data a l s o  show t h a t  
t he  i n i t i a l  s t a b i l i t y  of t h e  blunted cone i s  g rea t e r  than  that of t he  pointed 
cone by as much as 40 percent .  
increase i n  nose bluntness  from rn/d = 0 t o  
underpredicted by Newtonian theory.  

The exce l len t  agreement 

This increase i n  i n i t i a l  s t a b i l i t y  f o r  an 
rn/d = 0.20 i s ,  i n  general ,  

Dynamic-Stability Charac t e r i s t i c s  

The measured dynamic- s t a b i l i t y  parameter, 5 ,  f o r  both configurat ions i s  
presented i n  f igu re  11 as a func t ion  of the maximum r e s u l t a n t  angle of 
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a t tack ,  am. Negative values of 5 represent  a convergent model motion 
(dynamic s t a b i l i t y ) ;  pos i t i ve  values of 
(dynamic i n s t a b i l i t y ) .  The ba r s  presented i n  f igu re  11 indica te  the  uncer- 
t a i n t y  i n  the  measured values of 
able  random e r r o r s  of kO.5' i n  t h e  angle-of-attack measurements. A s  can be 
seen, t he  uncer ta in ty  i n  t h e  values of 
f l i g h t s ,  i s  r e l a t i v e l y  la rge ,  s ince t h e  e r r o r  i n  5 i s  proport ional  t o  the  
percentage e r r o r  i n  amplitude which increases  as the amplitude decreases.  
Also,  as noted i n  %he length of t h e  b a r s  shown i n  f igu re  11, the  uncertainty i n  

i s  grea te r  f o r  t h e  da ta  obtained a t  a Mach number of 34 than a t  the  two 
lower Mach numbers (M, = 11.5 and 19.5), since the  free-stream air  densi ty '  f o r  
t he  Mach number 34 tes ts  i s  very low. The experimental data  presented i n  f i g -  
ure 11 show t h a t  both configurations a re  dynamically s t ab le  a t  Mach numbers of 
11.5 and 19.5 and t h a t  t he  dynamic s t a b i l i t y  remains constant,  within the  sca t -  
t e r  of t he  data ,  f o r  t h i s  increase i n  Mach number and f o r  the  angle-of-attack 
range invest igated.  These data  a t  Mach numbers of 11.5 and 19.5 a l s o  show t h a t  
t he  dynamic s t a b i l i t y  of both configurations i s  e s s e n t i a l l y  the  same; a reason- 
able  average value of 5 i s  -3 and i s  approximately equivalent t o  a conver- 
gence of about 3 percent  per  cycle f o r  conditions of the  t e s t .  
number i s  increased f u r t h e r  t o  34, t he  r e s u l t s  ind ica te  la rge  changes i n  the  
dynamic s t a b i l i t y  of both configurations and i n  opposite direct ions;  t he  
blunted cone becomes more dynamically s t ab le  and the  pointed cone becomes 
dynamically unstable.2 
be g rea t e s t  a t  low amplitudes and a strong funct ion of angle of a t tack .  

5 represent  a divergent model motion 

5 ,  a t  the  values of om shown, due t o  prob- 

g, obtained from t h e  low-amplitude 

A s  t he  Mach 

The dynamic i n s t a b i l i t y  of t he  pointed cone appears t o  

These l a rge  changes i n  the  dynamic s t a b i l i t y  of both configurations f o r  an 
increase i n  Mach number from 19.5 t o  34 were not expected, p a r t i c u l a r l y  so, 
since the  drag and s t a t i c - s t a b i l i t y  cha rac t e r i s t i c s  of both configurations 
showed no l a rge  changes f o r  t h i s  increase i n  Mach number. These differences i n  
the  dynamic-stabil i ty r e s u l t s  from Mach number 19.5 t o  34 cannot be a t t r i b u t e d  
t o  model damage during launch since,  as s t a t ed  e a r l i e r ,  the  models used i n  
these t e s t s  a t  Mach number 34 were of t he  same mater ia l  (Teflon) and were 
launched a t  the  same ve loc i ty  as the  models i n  the  t e s t s  a t  a Mach number of 
19.5. The reasons f o r  these changes a re  not known; however, the  p r inc ipa l  d i f -  
ferences between the  t e s t s  a t  Mach numbers 19.5 and 34 (namely, the  la rge  
increase i n  Mach number, t he  increased r a t e s  of ab la t ion  of the bodies produced 
by an increase of about a fac tor  of 2 i n  convective heating, and the  increased 
gas d issoc ia t ion)  can ce r t a in ly  contr ibute  t o  producing these r e s u l t s .  Con- 
cerning the  p o s s i b i l i t y  t h a t  t h e  increased r a t e s  of ab la t ion  contributed t o  
producing these  changes, it i s  important t o  mention t h a t  some of the  shadow- 
graphs showed evidence t h a t  ablated p a r t i c l e s  ( indicated by the s t reaks,  Mach 
waves, i n  t he  exanrple shadowgraphs presented i n  f i g .  5 ( c ) )  were present i n  the  
flow f i e l d s  of almost a l l  the  models f ly ing  a t  a Mach number of 34, whereas the  
shadowgraphs of the  models f ly ing  a t  a Mach number of 19.5 (see,  e .g . ,  
f i g .  5 ( b ) )  showed no evidence of such p a r t i c l e s  although these models a l s o  
ablated during f l i g h t .  
observed i n  only a f e w  of the  shadowgraphs obtained f o r  a pa r t i cu la r  f l i g h t ,  

It should be mentioned t h a t  these p a r t i c l e s  were 

_ _  

?Because of premature f i r i n g  of some of t he  observation s t a t ions ,  the  
motion h i s t o r i e s  obtained fo r  f l i g h t s  429 and 432 (see t ab le  I) were shorter  
and not wel l  defined and were therefore  less than adequate f o r  measurement of 
dynamic s t a b i l i t y .  
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usua l ly  those obtained a t  t h e  l a t te r  s t a t i o n s  ( i . e . ,  s t a t i o n s  9 ,  10, and ll), 
and were most v i s i b l e  i n  p i c t u r e s  t h a t  had a "schlieren e f f ec t . "  
na te ly ,  f u r t h e r  comparison of t he  flow f i e l d  over t h e  models a t  the  d i f f e r e n t  
Mach numbers which may have provided some ins igh t  i n t o  t h e  problem w a s  not pos- 
s i b l e  since these  tes ts  were conducted, of necessity,  a t  low free-stream a i r  
d e n s i t i e s  where good f low-f ie ld  v i sua l i za t ion  i n  t h e  shadowgraphs i s  not e a s i l y  
a t t a i n a b l e  ( see  f i g .  5 ) .  
Mach number 19.5 were conducted i n  s t i l l  a i r ,  whereas t h e  tes ts  a t  Mach num- 
be r  34 were conducted i n  a countercurrent a i r  stream which, i f  i r r e g u l a r i t i e s  
were present ,  may have influenced the  dynamic s t a b i l i t y .  However, it must be 
noted t h a t  t h e  t e s t  conditions a t  Mach number 34 w e r e  i d e n t i c a l  f o r  both con- 
f igura t ions ;  that i s ,  the  same nominal 1.8 km/sec countercurrent a i r  stream w a s  
employed i n  a l l  t h e  t e s t s  a t  t h i s  Mach number, so t h a t  any i r r e g u l a r i t i e s  i n  
the  countercurrent flow should have influenced t h e  dynamic-stabil i ty r e s u l t s  of 
bo th  configurations i n  t h e  same manner. Hence, t h e  d i f fe rence  between t h e  
r e s u l t s  obtained f o r  t h e  pointed cone and t h e  blunted cone ind ica t e s  a r e a l  
dependence of dynamic s t a b i l i t y  on nose geometry. Also t h e  i n t e r n a l  consis- 
tency of t h e  r e s u l t s  f o r  each configuration ind ica t e s  s t rongly  t h a t  any random 
i r r e g u l a r i t i e s  i n  t h e  countercurrent a i r  flow had l i t t l e  e f f e c t  on the  present  
r e s u l t s .  

Unfortu- 

Another important d i f fe rence  i s  t h a t  t he  t e s t s  a t  

One other f a c t o r  concerning t h e  dynamic s t a b i l i t y  a t  Mach number 34 must 
be considered, namely, t h e  va r i a t ion  of free-stream dens i ty  with distance or 
time measured f o r  each f l i g h t .  The r e s u l t s  have been ad jus ted  as accura te ly  as 
poss ib le  t o  remove t h i s  e f f e c t  of the  density grad ien t  which, as s t a t e d  previ -  
ously, w a s  from about 10 t o  20 percent from beginning t o  end of a l l  t h e  f l i g h t s  
of t h e  models. The cor rec t ions  were determined i n  the  following manner: A 
motion w a s  generated f o r  each of t he  f l i g h t s  using the  single-degree-of- 
freedom-motion equation toge ther  with t h e  measured v a r i a t i o n  of dens i ty  with 
distance,  t h e  value of 

ana lys i s  of t h e  measured angular-orientation data by the  method of r e f e r -  
ence ll), and an a r b i t r a r y  "best estimate" of the  value of 5.' Discrete 
po in t s  (a t  very short  i n t e r v a l s )  of t h i s  generated motion were then taken as 
input da ta  f o r  t he  constant-density ana lys i s  using equation ( 2 ) .  
ence between the  values of 5 ,  obtained from t h i s  ana lys i s  of t he  generated 
motion, and the  input value of 5 ,  used t o  generate t h e  motion i n i t i a l l y ,  gave 
a cor rec t ion  f o r  t h e  e f f e c t  of t he  density gradient.* 
applied t o  t h e  value of 
of t h e  measured angular-orientation da ta  of a p a r t i c u l a r  f l i g h t .  Since t h e  
free-stream density decreased during t h e  course of t h e  model f l i g h t ,  t hese  

and i n i t i a l  values of 0 and b (obtained from 
c"aL 

The d i f f e r -  

This cor rec t ion  w a s  
5 obtained o r i g i n a l l y  from ana lys i s  by equation (2 )  

'Determination of t h e  required cor rec t ion  w a s  found t o  be independent of 
t h e  input value of E chosen. For example, input values of 6 = +20, -20, and 
0 gave e s s e n t i a l l y  t h e  same value of t h e  required cor rec t ion  f o r  a p a r t i c u l a r  
f l i g h t .  

which 

i n  a l l  cases agreed wi th  t h e  input value wi th in  l p e r c e n t  and showed t h a t  a 
dens i ty  grad ien t  has l i t t l e  e f f e c t  on t h e  determination of 
age value of p, i s  used i n  the  computations. 

c"aL 
4This ana lys i s  of t h e  generated motion a l s o  gave a value of 

CmcL when an aver- 



correct ions t o  the  data  were negative (contr ibut ing dynamic s t a b i l i t y )  and f o r  
most of t h e  f l i g h t s ,  not very large; these correct ions were less than A6 = -3 
fo r  a l l  t he  f l i g h t s  with the  exception of f l i g h t s  449 and 639, which had cor- 
rec t ions  LIE; of -10 and -?, respect ively,  because of g rea t e r  densi ty  gra- 
dients .5  It should be s t a t ed  again, however, t h a t  t h e  results a t  t h i s  &ch 
number ( M  = 34) a re  s t i l l  subject  t o  510 percent e r r o r  owing t o  the  i n i t i a l  
uncertainty i n  t h e  measurement of f ree-  stream densi ty  (see discussion under 
Description of Tes t s ) .  Corrections i n  6 due t o  the  measured densi ty  gradient 
of each f l i g h t  were a l s o  computed using Friedrich and Dore's expression f o r  
amplitude change due t o  dynamic pressure va r i a t ion  (see ref.  20) 

When t h i s  q l i t u d e  change i s  subs t i tu ted  i n  t h e  expression 

an increment i n  E, designated AE, i s  calculated which represents  t he  correc- 
t i o n  t o  be applied t o  t he  apparent value of 5 indicated by the  divergence, 
or convergence, of the  angular motion. Different  values of A5 w i l l  be 
obtained from equations (7) and (8) for a given constant densi ty  gradient as 
the  length of t h e  dis tance i n t e r v a l  Ax i s  varied,  because of t he  1/4-power 
dependence of a m a X / k x i  on g , r / ~ ~ ,  but  as Ax 4 0, A5 --* constant,  

(dqddx) / (  pmA/m)9m,. The var ia t ion  i n  A6 with Ax f o r  l a rge  var ia t ions  i n  

S, gave values f o r  t he  correct ions which were within +2 of t h e  values obtained by 
the  previously described procedure. However, it i s  believed t h a t  the  f i n a l  
values of 6 were more prec ise  when the  correct ions were computed by the  pre- 
viously described procedure because the  values of E t o  be adjusted were 
determined by use of t h e  method of reference 11. This method i s  not r igor -  
ously appl icable  t o  cases of variable-density f l i g h t  (but i s  necessary i n  
es tab l i sh ing  the  b e s t  f i t t i n g  continuous angular motion) , and any e r r o r s  in t ro-  
duced i n  these  values of 5 by inapp l i cab i l i t y  of t h e  equation should be can- 
celed by use of t h e  same method ( r e f .  11) i n  computing the  correct ions.  

i s  proper,  since the  e f f e c t  i s  nonlinear.  This r e l a t i v e l y  simple method 

It should be mentioned that dynamic s t a b i l i t y  i s  not of c r i t i c a l  %or- 
tance during t h e  high-speed (ear ly)  por t ion  of b a l l i s t i c  e n t r i e s  since the 
rap id  increase i n  atmospheric densi ty  strongly damps vehicle  o sc i l l a t ions .  How- 
ever, f o r  shallow-angle e n t r i e s  such as w i l l  be used f o r  manned vehicles  enter-  
ing planetary atmospheres, the  f l i g h t s  w i l l  be a t  e s s e n t i a l l y  constant a l t i -  
tude i n  which case the  dynamic s t a b i l i t y  of t he  vehicle a t  these very high 
speeds i s  of g rea t  importance. Also, 

51t i s  important t o  mention t h a t  
f l i g h t  623 increased during the model 
value of 5 obtained f o r  t h i s  f l i g h t  

i f  t he  dynamic i n s t a b i l i t y  measured for 

the  density va r i a t ion  measured f o r  
f l i g h t ;  therefore  t h e  correct ion t o  the  
w a s  pos i t i ve  ( 6  = M.8). 



t h e  pointed cone a t  a Mach number of 34 i s  i n  f a c t  caused by increased r a t e s  of 
ab la t ion ,  then  t h i s  e f f e c t  might poss ib ly  occur at  lower speeds which would 
warrant f u r t h e r  study i n  these  a reas .  

Included i n  f i g u r e  l l ( b )  a r e  two values of 5 obtained a t  a &ch number 
of 4 f o r  a cone having a nose bluntness of 
values a r e  seen t o  l i e  wi th in  t h e  s c a t t e r  of t h e  present  experimental da ta  f o r  
t h e  blunted cone obtained a t  similar low angles of a t t ack .  

rn/d = 0.167 i n  reference 3. These 

Values of t h e  dynamic-stability parameter, 5 ,  a t  zero angle of a t t a c k  
estimated f o r  bo th  configurations using Newtonian theory and equation ( 5 )  are 
a l s o  presented i n  f i g u r e  11.6 Comparison shows t h a t  t h e  t h e o r e t i c a l  estimates 
agree wi th  t h e  experimental da ta  obtained f o r  both configurations at  Mach num- 
b e r s  of 11.5 and 19.5. Although t h e  t h e o r e t i c a l  estimates are shown only a t  
zero angle of a t t ack ,  it i s  noted t h a t  Newtonian theory p r e d i c t s  e s s e n t i a l l y  
constant dynamic s t a b i l i t y  f o r  bo th  configurations f o r  t h e  e n t i r e  angle-of- 
a t t a c k  range covered by t h e  present  experimental r e s u l t s .  

CONCLUSIONS 

An experimental study conducted i n  air  a t  Mach numbers of 11.5, 19.5, and 
34 of a pointed and a blunted 30' half-angle cone has l e d  t o  t h e  following 
conclusions. 

1. Both configurations were s t a t i c a l l y  s t ab le ,  f o r  center-of-gravity 
pos i t i ons  loca ted  a t  t h e  models' cen ters  of volume, a t  a l l  Mach numbers and 
angles of a t t a c k  of t h e  inves t iga t ion .  The s t a t i c  s t a b i l i t y  of t h e  pointed 
cone increased with increasing Mach number. The s t a t i c  s t a b i l i t y  of t h e  
blunted cone w a s  e s s e n t i a l l y  inva r i an t  with Mach number and g rea t e r  than t h a t  
of t h e  pointed cone by as much as 40 percent .  
configurations decreased with increasing angle of a t t ack .  

The s t a t i c  s t a b i l i t y  of both 

2.  The nonlinear va r i a t ion  of p i tch ing  moment w i t h  angle of a t t a c k  f o r  
both configurations w a s  c lo se ly  approximated by a cubic polynomial a t  a < 25'. 

3. Both configurations were dynamically s t ab le  a t  Mach numbers of 11.5 
and 19.5 f o r  unpowered f l i g h t  a t  constant a l t i t u d e  and exhib i ted  p i tch ing  
motions which converged a t  the r a t e  of about 3 percent pe r  cycle.  A t  a Mach 
number of 34 t h e  blunted cone exhibited increased dynamic s t a b i l i t y ,  and t h e  
pointed cone became dynamically unstable.  The dynamic i n s t a b i l i t y  of t h e  
pointed cone became l e s s  severe with increasing amplitude of o s c i l l a t i o n .  

6Newtonian theory g ives  values of which were i n  exce l len t  agreement 

with t h e  values of C, + C% computed using t h e  present  experimental values 
of 5 ,  CD, and the values of C h  p red ic ted  by Newtonian theory i n  
equation ( 5 ) .  

q 
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4. The drag coe f f i c i en t  of both configurations increased with increasing 
angle of a t t ack  and remained e s s e n t i a l l y  constant with increasing Mach number. 
The drag of t h e  blunted cone w a s  approximately 8 percent grea te r  than t h a t  of 
t h e  pointed cone. 

5. The s t a t i c - s t a b i l i t y  and drag cha rac t e r i s t i c s  of both configurations 
were predicted by Newtonian theory,  and f o r  t he  pointed cone, by conical-flow 
theory,  usual ly  within about 10 percent .  The dynamic s t a b i l i t y  of both config- 
ura t ions ,  calculated using Newtonian theory, w a s  i n  agreement with the  mean 
l e v e l  of t he  experimental r e s u l t s  a t  Mach numbers of 11.5 and 19.5. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  Nov. 22, 1965 
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Figure 1.- Schematic drawing of Prototype Hypervelocity Free-Flight Facility. 
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II 

( b ) Blunted cone 

Figure 2.- Sketch of models showing nominal dimensions. 
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( a )  Aluminum models  with sabots 

( b )  Teflon mode l s  with sabots 

Figure 3.- Photographs of models and sabots. 
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Figure 4.- Typical pitching and yawing motions produced by the  models. 
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Figure 4 - Concluded. 
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( a )  M,= 11.5; V,= 4 km/sec 

( b )  M,= 19.5; V,=6.7 km/sec 

( c )  M,= 34; V,=8.5 km/sec 

Figure 5.- Shadowgraphs of models in flight. 
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Figure 6.- Variation of drag coe f f i c i en t  with angle of a t t ack .  
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